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Abstract

Coherent synchro-betatron resonances can present a serious limit for
low-energy synchrotrons with strong space charge. Here, an excitation of
a dipole transverse mode is considered at resonance condition.

1 Introduction

Rapid cycling sinchrotrons normally deal with so intense beams, that the space
charge tune shift can reach or even exceed 0.5. Therefore, to prevent integer
resonances, the machine tunes have to be set just a little below of integer num-
bers. Due to high acceleration rate, these machines have rather high value of the
synchrotron tune at injection energy. Small (non-relativistic) injection energy
results in the incoherent tune shifts (mainly due to beam space charge) to be
smaller the coherent (due to image charges). All these circumstances can lead
to an excitation of low-order coherent synchro-betatron resonance (CSBR). Due
to the high space charge tune shift, the coherent and incoherent spectra are ef-
fectively separated; thus, there is no Landau damping, otherwise stabilizing the
resonant mode. CSBR is in a way paradoxical phenomenon: a coherent mode
is excited by external perturbations. Growth of this mode does not depend on
the beam intensity, as soon as the incoherent spectrum is separated from the
coherent line by the space charge, which easily happens at relatively low beam
current.
Some indications show that CSBR is an important phenomenon for the Fer-

milab Booster. This paper does not discuss observations though, leaving that
for future reports, and being limited to the very concept of CSBR.

2 Dipole Resonances

Condition of dipole CSBR is �b + l�s = n, with �b = !b=!0; �s = !s=!0
as the coherent betatron and synchrotron tunes, and l; n as integer numbers.
When this condition is satis�ed, any dipole perturbation generally drives the
resonance mode. To understand main features of the phenomenon, a longitu-
dinal distribution is taken here as the air-bag one: all the particles have the
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same synchrotron amplitude r0, and they are homogeneously distributed over
the synchrotron phases �; the longitudinal o¤set is z = r0 cos�: Following Ref.
[1], the Vlasov equation for the distribution function  can be written as
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Here s = v0t is time in conventional units of length, v0 is a longitudinal velocity,
x = q cos � and px = �(q=�x) sin � are the betatron coordinate and momentum
(angle), ex0 = dex=ds andfpx0 = dfpx=ds are their perturbations. It can be assumed
here, that the perturbation kicks are localised at single point s = sk; in case of
many points the �nal result can be obtained by summation over them. Such
localized perturbations are presented as

ex0 = �x�P (s� sk) ; (2)fpx0 = �px�P (s� sk) ;

where

�P (s) = C�1
X
m

exp(�ims=R) (3)

is the periodical delta-function, C = 2�R is the ring circumference.
For example, the perturbations may be caused by acceleration kicks in RF

cavities, if there is some dispersion D or its derivative D0 there. In this case,

�x = �D sin(kz) �pmax=p0 (4)

�px = �(D0 +
�x
�x
D) sin(kz) �pmax=p0 ;

where k is the RF wave-number, �x and �x are the local Twiss parameters,
�pmax is an amplitude of the RF kick of the longitudinal momentum, and
p0 is the longitudinal momentum itself. Other possibilities for that sort of
perturbations include a mismatch between the dipole �elds and momentum at
acceleration (independent on the longitudinal position z), and dipole �elds from
image charges and currents (proportional to the local linear density).
According to the conventional perturbation approach, a solution of the

Vlasov equation (1) is presented as a sum of a steady state distribution and
a perturbation:  =  0 +

e . For the air-bag (hollow beam) distribution,
 0 = f0(q)�(r � r0) ; (5)e = A(s)

p
�xf

0
0(q)�(r � r0) exp(i� + il�+ i�z=r0 � i
ls=c) :

Here 
l = !b + l!s = n!0 is a frequency of the considered resonance mode
and A(s) is its slowly growing amplitude, f 00(q) = df0=dq, and � = �r0=(R�) is
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the so-called head-tail phase, with the chromaticity � = d�b=d(�p=p0) and the
slippage factor �: Substituting Eqs. (5) in the Vlasov equation (1), neglecting
the second-order terms / ex0e , fpx0e and leaving only a resonant contribution
m = n in the periodical delta-function expansion (3), a time derivative for the
mode amplitude is obtained:
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exp(�i��il��i� cos�+insk=R) : (6)

Averaging over the betatron phases, e�i� sin � ! 1=(2i) ; e�i� cos � ! 1=2
, averaging over the synchrotron phases, h:::i�, and summation over all the
perturbations along the ring,

P
k; leads to
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(7)
This equation gives an increase per turn of the amplitude of the synchro-betatron
dipole mode l in case of the integer resonance 
l = n!0: In principle, this
phenomenon is equivalent to excitation of a linear oscillator by an external
resonance force; the amplitude grows linearly in this case.
In case the resonance is near, but not exact, �
 � 
l � n!0 6= 0, the right

hand side of Eq. (7) has to be multiplied by an oscillating factor exp(i�
s=c):
The Landau damping can be included adding ��LA in the right hand side.
In principle, several ways can be foreseen to suppress CSBR:

� To move the machine tune further from the integer, or put it in between
the neighbour CSBRs;

� To increase the chromaticity, reducing the driving force in Eq. (7) and
possibly introducing the Landau damping;

� In the opposite, to set the chromaticity so low that � � 0; so that the
driving force for either even or odd modes will be zeroed, and to pick such
a tune, that the resonance mode is with a zero force;

� To cross CSBR faster;

� To apply a 3rd harmonic in the RF, introducing more Landau damping.

Similarly, CSBR of any betatron order, m!b + l!s = n!0; m � 2; can be
treated; however, it is not clear for the authors if the higher order CSBR can
be ever signi�cant. Regarding the considered dipole CSBR, we estimated its
possible in�uence for the Fermilab Booster at injection energy, and found it
can be pretty strong, leading to the o¤set growth ' 30 � 60 turns/mm. Some
experimental details have been presented in Ref. [2]; their consideration from a
point of view of CSBR is going to be a subject of a separate paper.
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3 Conclusion

Analytical consideration of the coherent synchro-betatron resonance is presented
for a simpli�ed air-bag distribution. Essentially, the phenomenon results in a
linear growth of the resonant coherent mode. This growth is driven by external
�eld, so it is not sensitive to the beam intensity, as soon as Landau damping is
switched o¤ by the space charge. The phenomenon tends to be important for
low-energy synchrotrons.
We are thankful to W. Pellico and X Yang for providing us with a stimulating

measurement data, and to V. Danilov for exciting discussions.
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